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Abstract. Realistic applications of autonomous Robotics face a lot of difficulties
in real environments. To navigate, self-localize and cooperate in such contexts, a
multi-robot system has to find a way to represent and share knowledge about the
world it is living in. In this paper we discuss the necessity and the advantages of
grounding representations and communications of a robots team in real perceptions.
We describe a technical framework designed for this purpose, which is based on the
classification of the perceptions of a robots population. Percepts must have specific
properties to enable grounding, and we present particular percepts well suited to
this process. Finally we discuss the possible usages of grounded classes and propose
a grid representation for fusion and exchange.
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1 Introduction

Realistic applications of autonomous robotics face the difficulties that arise
in most indoor environments. Real environments are usually partially un-
known, not prepared for robots, and they are subject to dynamical changes.
In those environments, perceptions of robots are uncertain, robots build and
follow imprecise maps, robots get lost, they are starving while looking for
energy, their knowledge becomes blurred during long term operation. Beside
this, most realistic applications require the deployment of several robots in
the same environment, for cleaning, surveillance, exploration, guided tour,
delivery, animation... This is needed at least to scale to normal environments
size and often needed by the nature of the tasks.

We believe that concrete problems such as navigation, localization and map
building benefit of being envisaged from the outset in the multi-robot perspec-
tive. If this is envisaged later the potential solutions may not be adaptable
to a multi-robot context and will not take advantage of the robot team’s
distributed point of view and multi-sensor capacities. In order to face those
problems, we argue in the first section of the paper, that a shared medium
for representation and communication between robots has to be discovered in
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the available set of real perceptions. In the second section a technical frame-
work for collective representations is described, based on classification of the
robots’ population perceptions. The third section presents particular percep-
tions, well suited to grounded representations. Preliminary results of percept
classification are given to illustrate the approach. In the last chapter some
usages of grounded collective representations are discussed and Percept Dis-
tribution Grid are proposed to support cooperation in dynamic environments.

This work is part of the larger project Microbes headed by Alexis Drogoul
at the LIP6 in Paris(Computer Science lab. of university Paris 6 ). The aims of
the Microbes project are to enable the long-term adaptation of a robots colony
in human standard environments and to study human/robots interactions
and arising problems apart from a specific task context. The robots used
in the project are Pioneer 2DX equipped with 16 ultrasonic sensors, a ccd
color camera, a compass and a radio modem. All computations are performed
on-board on the embedded Linux-based PC. The project takes place in the
laboratory, a typical office area of 4000 square meters.

2 The need for grounded collective representations

A lot of activities performed by a robot such as mapping o learning path-
ways, involve the use of some kind of representations. These representations
do not necessarily refer to a human-like abstract model. Beside this, a multi
robot system benefits to mix up and collate robots partial informations and
therefore use some communication scheme, for instance when specifying a
meeting point, or building a global map from partial ones. It is clear that
cooperative activities require the use of a shared medium where the commu-
nication can take place. In simulated robotic systems a shared medium can
be easily found using the underlying precise model of the world and robots
can communicate precise locationsand precise perceptions. However, in a real
multi-robots team, deployed in an unknown environment, this is not the case.
Robots’ locations are imprecise and sometimes unknown, sensors are noisy,
not necessarily following Gaussian models and due to the dynamicity of the
environment, unpredictable events may happen. Also in a world that resists
to an immediate symbolic transcription, the robots may have difficulties to
communicate initially with symbolic tokens. So, basically, what can the robots
use to communicate ?

Our hypothesis is that, in a real multi-robot system involved in concrete
tasks, there should be a tight relation between the perceived world, the inter-
nal representations and the communication language elements, and that this
bottom-up chain should be anchored in the real perceptions. As an example,
the problem of self-localization and the problem of sharing the description
of a particular location between robots are similar, since they both rely on
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finding sufficiently stable features in the environments. Generally we could
say that representing the world and talking to others about the world are two
facets of the same problem. Both require an initial material, strongly related
to what it is possible to do and to perceive in the environments. Grounding
in robotic systems is a promising direction, as pointed out by Brooks [?],
and it is the natural emanation of today’s ideas, that progressively blur the
mind-body dualism. In Collective Robotics somehow similar orientations are
proposed in papers such as [?,?]. However these papers do not address the
problem of long term adaptation in large environments.

Of course the internal representations used by a robot can categorized by hu-
man beeing categorized landmarks (doors, corners, crosspoint, lanes ..) and
the communication chunks be list, graphs,... constituted with those elements.
But, in an unknown, dynamical environment, trying to ground representation
and communication in real perceptions has the following advantages:

• The robots elaborate and communicate about what they are ‘used’ to
perceive and not what we guess they should perceive.
• This prevents us from developing feature recognition mechanisms that

could be too much specific to a given environment.
• This prevents us to follow a misleading human ‘a priori’, allowing a better

adaptation of the robots to their environment.

For this purpose we favor the emergence of a collective substratum that can
be used as an elementary material for representation and communication.

3 Percept class language

The proposed substratum is a rudimentary language: a finite set of classes
whose ‘meaning’ is well known in the robot team. The set of classes is obtained
by classifying the percepts of the robot population with a self organizing
classifier. Several authors [?,?] have used unsupervised classifiers to classify
perceptions of a single robot (ie, sets of sonar values) in a robust way. After
sufficient learning, percepts are input in the classifier and the output classes
are placed as landmarks indicators in a topological map. Here, in addition
to this method we broadcast the percepts over the robot team to obtain
homogeneity and use rather different percepts (see next chapter). We also
choose to consider only percepts that are sufficiently singular: we do not
take too frequent percepts (not informative) or too rare (spurious) ones into
account. The class set is built in four steps (see fig ??):

• Perception: each individual regularly produces percepts while exploring
its environment.
• Broadcast : the percepts produced are broadcasted (through the radio

modem) to all other members of the team. Each of them constitutes a
set of its own percepts plus the received ones.
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• Singularity Filtering : the set of percepts is filtered so as to retain only
the percepts which are sufficiently singular with respect to the whole set.
• Classification: each robot classifies the set of percepts. After classification,

the resulting class set is the same for each individual.

Fig. 1. Each robots broadcasts its percepts to the other ones. Individual percepts
and received ones are input to an unsupervised classifier

After a sufficient maturation phase each robot can use the classifier to cate-
gorize its own percepts. The classes then constitutes an elementary language
whose signification is well known among the robots and anchored in the
possible perceptions. More elaborated representations (maps) can later be
built using those elementary bricks.

The filtering and the classification may be performed with a Kohonen Self-
Organizing Map (SOM)[?]. A SOM classifier is constituted by a 2D lattice
of nodes. Each node i corresponds to a class and stores a reference vector
mi, a representative of the class. The class c of a new input vector x can be
obtained by comparison to reference vectors using appropriate distance:

c = argmini ‖x−mi‖

During learning, the reference vectors are updated to reflect the distribu-
tion of the input vectors, for each new input vector, the winning node and
neighbors are moved towards the input vector value. At the end of the learn-
ing process the reference vectors are topologically ordered.

A SOM classifier has the following interesting properties:

• Topology preservation : the similarity relationshipss that exist between
the percepts is maintained between their corresponding classes. It allows
to use a distance between classes.
• Unsupervised learning : autonomous exploration is possible.
• Error quantification : the distance between an input vector and its class

reference vector : ‖x−mc‖ , can be used to reject irrelevant percepts
(ie: caused by temporary obstacles).

In the above process, the filtering step is required because we want to
focus on the singular aspects of the environment, and do not want to take
percepts that are too frequent into account. The SOM classifier over-fits the
most frequent percepts, and thus the less frequent ones have a higher quan-
tification error. We use this property for filtering, with a first SOM classifier.
The percepts are classified a first time and the average quantification error for
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all percepts is computed. Then the percepts with a quantification smaller the
average error (over-fitted) are eliminated. In the classification step remaining
percepts are simply classified again using SOM.
In order to be anchored in the complete (eventually changing) environment
the building of the substratum has to be coupled with an appropriate explo-
ration behavior and a regular update of the classifier.

4 Choosing appropriate percepts

The word ‘percept’, here, refers to the result of some transformation applied
to the raw sensors. This can be vertical lines extracted from video images,
derivative of sonar values over the time to detect sudden variations, precise
landmark detections such as doors.... The transformations can involve sev-
eral sensors, (sonar and odometry for instance), they can also incorporate
internal states values, or they can come from an active perception behavior.
While raw sensors are most of the time immediate (ie, sonar range), percepts
can integrate information over time and can contain informations that are
currently out of reach (ie, after passing a door).

In a grounded system, the choice of an appropriate transformation from
raw sensors to percept is necessarily crucial because it orientates the whole
system. As an indication, we can refer to the importance of this transforma-
tion in animal nervous systems [?]. We suggest that the transformation is not
only to obtain more accurate and precise information about the environment,
but also to obtain an ambient feeling that captures invariant structures of
the environment on sufficiently wide areas. Ambient here means invariant
relatively to specific poses, invariant relatively to particular trajectories and
possibly invariant to local sensing sequences. To illustrate this, one may think
of sauntering in a town and being successively under the influence of a nar-
row street ambiance, then an open place ambiance, and so on. This kind of
property is desirable in a mapping system, since it should help stable disam-
biguation of sufficiently wide areas. We are therfore looking for percepts with
following properties:

• Percept that are not instantaneous, integrated over a period of time,
containing informations not accessible to immediate senses (out of reach).
• Percepts that are ambient, as much as possible invariant to particular

poses and that do not rely on detection of details.

And to fulfill the requirements of the SOM learning :

• Synthetic percepts, especially to shorten SOM processing and broadcast.
• Comparable percepts because SOM requires a distance between input

vectors. Also we want to know if two percepts are sufficiently different.
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4.1 Percepts obtained from an occupancy grid

Sonar sensors are widely used in the robotic systems and their disadvantages
are also well known, since they are subject to noise and specular reflections.
Moreover they give a poorly informed and imprecise vision of obstacles sur-
rounding a robot (in our case 16 sonar ranges around the robot), and this
at a rather low rate ( 1/3 of a second). H.P. Moravec and A. Elfes [?,?]
have proposed a statistic method to improve sensors information and to fuse
heterogenous sensors. The occupancy grid have been succesfully used in a
number of works [?,?]. In the occupancy grids, the space around the robot is
tessellated into small square cells (env. 15x15 cm). A probability value asso-
ciated to each cell represents the occupancy probability of the corresponding
location. Initially the probabilities are unknown (0.5), and as the robot pro-
gresses the probabilities are refined (using Bayes’ rule), the cells receiving
more sonar hits having their value increased. The moves of the robot in the
grid reflect the moves of the robot according to the internal odometer. Figure

Fig. 2. Occupancy grid obtained in a
part of our office environment (here
a large corridor and a narrow lane
- env. 20 m long). Grey, black and
white cells correspond respectively to
unknown, occupied and free space.

Fig. 3. Local occupancy grid (using
16 sonars and odometer, no position
correction) - size 6x3 meters

?? shows an occupancy grid obtained in our office environment. The sonars
have been modeled by single rays. Here the odometry drift and slippage have
been partially compensated by using a mechanism based on the detection of
wall orientation. However the local odometry precision is sufficient to build
local grids (several meters wide) without any position correction, thus with-
out presupposition on the conformation of the environment (Fig.??).

A percept with the properties stated in precedent paragraph (Fig.??) can
be obtained from this local grid: The mass center of the grid constitutes a
virtual point of view, independent of the trajectory. Drawing n rays (n=36)
from this point, we can build a vector of n distances to the nearest obsta-
cles. The orientation of the first ray is given by the north of the filtered
magnetic compass. Such vectors can be compared easily using an Euclidean
distance. This percept canconstitute an input in the SOM classifier. Percept
with similar shape and orientation have similar resulting classes.

4.2 Example of Percept classification

Figure ?? shows the class reference vectors obtained by a single robot during
the exploration of a part of the environment. This gives a short vocabulary
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Fig. 4. The percept, obtained from
the local occupancy grid matured
during a short period, is a vector of n
distances measured from the current
mass center of the grid to the nearest
obstacles

Fig. 5. Successive percepts obtained
along a path in the office environment
(robot experiment). They are rotated
according to the internal compass

of 6x10 classes. The classes around class (5,4) correspond to narrow North-
West/South-East corridors with opening at NE. Around (5,6) are larger cor-
ridors with larger opening. Classes around (2,4) corresponds to transition
between large and small corridor. Corridors with different orientation have
classes around (6,10). Wide areas are around (1,8). This classification is solely
intended as an example of the proposed approach.

Fig. 6. SOM reference vectors obtained during the exploration of a part of our
office by a single robot.

5 Usage of the Percept classes

5.1 Support for traces and maps

During its exploration the robot can produce single traces having the follow-
ing conformation: a trace is a succession of linked nodes; each node is labelled
with the corresponding percept class, each link is labelled with geometric dis-
tance and compass sense orientation. A new node can be added to the trace
when sufficient distance has been traveled through (distance may be obtained
by integrating the odometry value) and when the distance between succes-
sive classes exceeds a given threshold (exploiting the topology preservation
property of SOM classifier).
The traces can be combined into complex topological maps. The difficult
problem of maintaining a consistent map during long term operation, as well
as the localization/re-localization problems can be eased by using ambient
percept and percept class comparison. In a populated environment such as
ours, invalid percepts can be rejected using quantification error.

5.2 Fusion and exchange-Percept Distribution Grids

The fact that a representation can use classes that are significant for all the
robots helps the design of various exchange schemes. Primarily robots can
exchange useful pathways that they have discovered, for instance exploration
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pathways starting at the power stations.

Topological representations are rather difficult to match and are not eas-
ily tractable. Alternatively we propose that the robots exchange discretized
representations of the environment. Each robot can project its traces, and
topological maps into a tessellated representation of the environment, a grid
made of large cells (ie: 2x2 meter wide) and where each cell can store the
probability distribution (histogram) of the encountered percept classes (fig
??). The cells can be labelled with utility informations (ie : visited or not).
Arbitrarily the fixed point constituted by the power station is set in the center
of the world. The histogram can reflect variations in the environment such as
doors opened, closed , partially opened... The possibility of a grid description
of the world with large cells directly rely on the ability to distinguis stable
ambient percepts in the environment, each cell being under the influence of
a small set of percepts. Of course the reliability of such grids depends on
the correctness of the topological maps. However, even imprecise, they can
provide a basis for cooperative behaviors.

Fig. 7. Percept Distribution Grids: The environment (here hypothetical) space is
tessellated into 2x2m cells. The grid keeps memory of the percept classes that
have been observed in each cell. For a given location, several percepts may be
observed (door closed, door semi-opened ..), therefore each cell keeps the histogram
of observed classes.

The robots can exchange/fuse their maps cyclically to obtain a collective
global map. The detection of overlapping zones is eased by the small amount
of grid cells and by the fact that partial maps follow the same orientation
(compass sense), and have a common fixed point (power station) then the
size of the search space is reduced. A territorial division behavior, useful
in most office environment applications, can be obtained by minimizing the
overlapping areas between individual maps.
The grid provides the robot with a shared medium where synchronization,
resources sharing, etc.. can take place more easily than in the physical world.
The detection of Robots encounters, difficult to realize in the physical world,
can be made easier by traces and grids confrontation. By comparing recent
traces robots can confirm if they have encountered a colleague.

5.3 Meeting human models and representations

At the end, in most of multi-robot applications, it is necessary to meet the
models and representations commonly used by humans. This is required for
monitoring purpose or control purpose, for the design of behaviors that are
somehow related to human activities. A simplistic but realistic approach can
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be to label subsequently the set of SOM classes. A user can visualize the
percept reference vectors, and associate a description, such as ‘large corridor’
, ‘narrow lane’, ‘opened door at south ’ etc... The labelling can also be applied
to the grids, by specifying points of interest (ie, forbidden places, etc ...).

6 Conclusions and future work

In this paper we have presented a method for grounding a robot team’s rep-
resentations and communications in real perceptions. We have argued that
this is an essential feature to deploy a group of robot in real environments.
A technical framework has been described, relying on broadcast and clas-
sification of adequate perceptions. Preliminary results have been presented
to illustrate the approach. In future work we plan to perform larger experi-
mentations with a team of six robots, studying particularly : the classification
process, the relevance of discovered classes, the building of reliable maps with
those classes and the confrontation of individuals’ maps. A second set of ex-
periments will then be carried in which we will extend the ambient percept
with visual information (ie, color histogram ).
We believe that the classification of the population’s percepts provides a ma-
terial for various learning experiments. Implicitly, the sharing of percepts in
a robot population is an attempt to increase the initial amount of common
experience, suggesting that the possibility of any communication act depends
on such common experience, a ‘common ground’.
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