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Abstract

This paper is concerned with the learning of robots be-
To face the constraints
imposed by both physical and human spaces, it insists

haviors in real environments.

on the interest of a shaping process relying on learn-
ing by demonstrations. A mechanism for learning by
demonstration is breifly described based on robot vi-
sion. The paper then discusses several general points
related to learning by demonstrations, focusing partic-
ularly on pratical issues.

1 Intr oduction

This paperis interestedn the adaptationof robotsto
real ervironmentsby the way of learningby demon-
strations.

Robots have sophisticated sensors and devices
comingfrom their designprocessout no phylogenetic
neither ontogeneticprocesseshave occuredto really
adapt them to our ervironments. Like ary living
beingthey have to dealwith physicalconstraintsand
moreover they have to be adaptedo constraintof our
humansocialspace.

Tofill this gapthemethoddike:

e Learningby Demonstation
[AtkesonandSchall,1997,
[H.FriedrichandDillman, 1995,

e LearningBy imitation
[Bakker andKuniyoshi, 1994,
[J.DemirisandHayes,199q,
[G.HayesandDemiris, 1994,
[Gaussiertal., 1997

e andSupervised.earning[Pomerlau,1993

take adavantageof direct human demonstrationgo
obtaina betteradaptatiorto physicalandsocialspaces.

In the next chapter we present briefly our pro-
posedtechniquefor capturefrom demonstrationsand
reproductionof behaiors - a wider descriptioncan
be found in [HuguesandDrogoul,2001. In a second
part, startingfrom this technicalproposal,we discuss
more generalpoints, always consideringthe practical

issues.
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Figurel: Threeexampleswhich may be usedto shape
thebehavior "Exit by thedoor”.
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2 Behavior Capture

The proposedearningmechanismransformsa set of

demonstrationgor examples)shovn by a tutor into a

syntheticbehaior. This syntheticform will be used
later by an autonomousobot so asto reproducethe

behaior in situation. This Bevavior Capture process
usesasinput the color videoimagesseenby the robot
andthe valueof its effectors(herewheelsvelocities).

To record an example the tutor controls the robot
by a joystick (linked by radio communication)and
producesa movie file containingvideo framesfrom
robot cameraand robot movements(effectorsvalues).
The movie files arefirst preprocessedndlocal prop-
erties (propy, props, ..., prop,) are extractedfrom de
perceptuafield.



The capture mechanismrelies on two data struc-
tures:

e The perception/actionselationsare encodednto
a setof cells

e Thecontet of thebehaior is capturednto a con-
text histogram

They arereferredhereafteby Cells andContext.

In the learning process, each example E; is first
recordedand capturedseparately This producesa set
of cells and an context histogramfor eachexamples,
denotedrespectiely by Cells; and Context;. The
final behaior is obtainedby fusion of all Cells; and
Context; into Cellsfing and Contextying Which
canbeusedby therobotfor realoperation.

2.1 CellsPopulation

In the Cells data structurethe cells are organized
alongp dimensionseachdimensioncorrespondingo a
property The propertiesusedduring experimentations
where:

e X locationin theimage
¢ ylocationin theimage

e color classproperty Obtainedby quantizationin
hue,saturationaluespace.

e local density For a given pixel, local densityis
the amountof neighbouringpixels of the same
color.Thisenablego distinguishseverallocal con-
figurationsof a pixel neighborood.

The captureof perception/actionelationsis obtain
by projecting all video framessuccessiely onto the
cells structure. A cell is activatedif all its properties
(prop1, propa, ., prop,.) aredetected The uniquepur-
poseof a cell is to storea meanof the effectors(the
wheelsvelocites) computedfor periodsof activation
(Eq. 1).

cell= FE [effectors/activated(cell) Q)
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Figure2: Cellsdatastructureusedto capturea beha-
ior. Thefourth dimension(neibourhoodiensity)is not
shawn.

2.2 Context Histogram

The propertiesinformationsobsened along an exam-
ple, andmorepreciselythe color information,areused
to build Context; thecontet histogramof exampleE;.

Context;[color] representtheimportanceof color for

the whole example. Every color is not taken into ac-
countanda measurementf color dispersionis usedso
asto favor colorsthat belongto compactand big ob-

jects. Context givestheimportanceof eachcolor for

the behavior. The fusion of several Context accentu-
atesagainthosecolors.

2.3 Fusion of examples

Each example is captured separatelyin Context;
and Cells;.  All example are finaly fused into
Context fina andCellsfinq by simplearithmeticop-
erations. Contextying iS Obtainedby multiplying
separatehistogramsto emphazizecommon features.
Cellsfina is obtainedoy takingfor eachcell themean
of all correspondingells.

2.4 Reproducing Behavior Autonomously

To reproducehebehaior in realtime therobotcamera
imageis projectedagainontothe Cells ¢;n4; Structure.
Thisdetermines setof active cellsfrom which current
effectorsvaluescan be deduced. A majority scheme
is usedto determinethe effectors values from this

populationof cells.

In the majority scheme, cells importanceis pon-
deratedoy their correspondin@ontext ¢inaqi[color] SO



asto considerespeciallyimportantfeatures.

2.5 Experiment |
object and stop”

learning "appr oach

The complete learning mechanismhas been imple-
mentedon a robot pioneer2DX running Linux and
equippedwith a color monoscopicamera.

In a first experiment we want the robot to ap-
proacha greenbox andthenstopat approximatelyone
meterof the box, Threeexampleshave beenrecorded
to learnthe behavior. Like the onein Fig. 3,eachone
correspondgo a different pose. Once the behaior
is active, the robot can be settledat various places,
it then reproducesthe behaiior correctly if the box
is sufficiently visible. The behaior works alsoif the
greenbox s settledbeforeanothemackground.

2 sometimegamesitself in thedoorembrasurethis shovs
. thatandavoidancereflex (ie: basedon sonars)should
beassociatetb obtainsmoothemnavigation. Thefigure

Figure3: A first example(resumed}o learn"approach
boxandstop”behaior. Figureshavstheoriginalvideo
andbelow the correspondingncodedrideowith color
properties.

The Fig. 4 shows the responseof Cellsyinq t0 a
videoimage. Intensityof pixelsin responsémagecor
respondgo intensity of forward velocity storedin the
cells. In responsé-ig. 4 alot of pixels”tells” to gofor-
ward. A lot of indicateszerovelocity but arenot taken
into accountdueto context histogramponderation.In
Fig. 5 muchlessforwardintensityis visible androbot
is nearto stop.

Figure4: Forwardvelocityresponséright) of theClells
structureto the videoimage(left). Responsés strong,
therobotgoesforward.

Figure5: Forwardvelocityresponséright) of theCells
structureto avideoimage(left). Responsés low , robot
is nearto stop.

2.6 Experiment Il
door”

. learning "exit by the

In a secondexamplewe wanttherobotto learnto exit
by a blue door. In this casefour exampleshave been
recorded.To testbehaior reproductiortherobotis set-
tled atvariousposesearthedoorandif thedooris vis-
ible, the robotis ableto orientate,adjustsits direction
andsucceeds 60 percent®f trials. Howevertherobot

7 and9 shawv thereactionscells populationin two dif-
ferentsituations.Eachactive cell is representedhy the
vectorthatit proposes.

3 Discussion

The capture mechanismdescribedabore permits to
integrateseveralexamplesdemonstrateérom different
poses. In the experiments, partial overlapping of
currentperceptionswith previously seenexamplesis
sufficient to generateappropriatesnovements. The
final context histogram capturesin a rough form
somecontetual featuresof the ervironment. Fusion
highlightsonly thefew colorssupportingthe behavior.

The capture mechanismhas certainly to be im-
proved and extended. However from this practical
departurdt is possibleto ernvisageseveraldirections.

3.1 Pedagogy

In alearningby demonstratioschemehe humantutor
hasto interactswith the robotsoasto improve robot’s
capabilities.This dialecticalprocessuggestshe useof
some’pedagogicaltricks thatwill helpto supportand



: RobotVision atframeta

Figure6

S A e
A AN e
e
e
e e e
K ey
x..\.‘

¥

TR ok ke

I'4

’
¥
B ey e
¥

P

~
-~
5}
S
S
E
5]
c
0
2
4
2
S}
Qo
o
[0 d
o)
0
S
>
2
i

e e a

P N ey

P
. i
PRSI
s

LT e v e ek

L

R e ey eP P
e

I

v

L R N Y R L AL L C LN

\

por S

“
“ v

-

M R A

LS

y

v

[ N

e

R N LR

PR ERRR vy oy AN v oy e AR R RN

cuy
¥
Y \
arw
vay
s _n\
Vor
V¥
& R\
I3 &
i
v
.

D I T

P

« wwow

Aok A oA

«

P
P R R

P T S
P T S S
P N S S S

<

<« <

e

Aok oa ko hoaa

.
 xa

Figure 7: Reactionsproposedby the cells at frame
ta. Robotis far from the door andcells proposeto go

straighton

Figure9: Reactiongroposedy the cells at frametb.
Robotis justnearthedoorandnow cellsproposeo turn



structurethe learningprocess.

¢ Repesentatiorof robot’s inner functionning The
humantutor shouldhave a clearideaof whatthe
robotis really ableto do. Thetutor shouldbeable
to imaginate how a robot canpassfrom onestep
to another what featuresof the ervironmentthe
robotwill useto supportandconstructthe behar-
iors. Thusthe tutor shouldbe providedwith some
idealizedrepresentationf robot’sinnermostunc-
tionning. It is importantto noticethat this repre-
sentationcan be entirely fake, its uniquepurpose
is to helpthetutor to establisrsomeguidemarks.
With the presentedechniquethetutor mightthink
for instancethat compactcoloredobjectsareim-
portant,that things presentin eachexamplesare
importantalso,andsoon...

e Corvemingviews: Therobotandhumartutorlive
in totally different perceptualspaces. It is clear
thatfrom a perceptuabndability point of view a
50cmroundbox evolving at 200 mm/sanda hu-
mantutor don’t sharemuchin common. This has
of courseémpacton the significanceof demonstra-
tions. However the experimentalsetupdesigned
to conductdemonstrationsanbetailoredsoasto
bring the tutor nearerfrom therobot. This canbe
doneby reducinghetutor’'svisionandcontrolsvia
appropriateapparatugcomputerdisplays,control
device with feedback,etc.. ).

e Facetsof usersintentions:

Defining and shaowving the facets constitutesa
praticalpedagogy

3.2 Context

The context wherea behavior occursis of greatimpor-
tance.In our thinking a behavior is not a successioof
actionsthatcanbe performedarnywhere.

First, a synthetic behaior has to be independant
of irrelevant featuresof the learning context. For
instanceit is clearfor a humanobsener that the box
whichappearsn Fig. 1 in only oneexampleshouldnot
betakeninto accountinto thefinal behaior.

Beside this, the contet independanceéhas a coun-
terpartwhich is context detection The actionsonly
male sensein precisecontexts andthusthe ability to
recognizevalid contetsis veryimportantto triggerthe
appropriatedehaiors.

The litterature often refers to similar (or inverse)
notion of perceptualaliasing in the framework of
Markov’s decisionsprocessesHowever for the learn-
ing methodsthat involve humanswe preferthe notion
of context. This notion clearly points out the deep
differenciationwork that a robot should ideally do
to adaptitself to its ervironment. A robot hasnot to
perfomwell in the most complicatedcase. It hasto
perfomwell in mostof the caseghatoccursreally.

The objectve of Learning by demonstrations Robots do not have model of the world at their

methodsis somehav to transmitthe intention of
theuserinto therobot's behaior. Fromevery day
experiencewe know that intentionis a polymor
phic and versatileobject which is not so easyto
tackle.

In a simplified view the users intention can
be decomposedand cut into elementaryfacets.
Facets are just minimal scenarii, which, put
together form the real behaiior (ie: facet; :
approachingthe door like that i would do that,
facets: approachingt like this i would do this,
facets) etc..)

In the capture mechanisma facetis a single
demonstration.The final purposeof the learning
mechanisnis to agregatesthe facetsand provide
correctbehaior for all theintermediatesituations.

disposalandthereforeto determinewhat a context is,

is extremely difficult. In capturemechanismsve use
a rough approachessuggestingthat simple statistics
computedover the perceptionsprovide valuable in-

dicatorsfor context identification. In [Hugues,200Q

we proposedhow perceptionscould be differentiated
andclassifiedusingKohonens Featuresviap (SOMF).

Thiswasdonefor communicatiorpurposebut canalso
beusedin the context identificationproblem.

3.3 Elementary affordances

The theory of Affordancesproposedby J.J.Gibson
[Gibson,198§ suggeststhat a behaior is a com-
plementary relation between an animal and its
ervironment. The ervironmentprovidesa supportfor
whatthe animalcanafford. For realliving beingsthis
relationis the productof a complex phylogeneticand



eventually ontogeneticprocess. This approachcan

be (and has been) transposedsomehav in robotics
and robot behaiors can be thoughtof as elementary
affordances.In anaffordancepoint a view therobotis

nomoretrying to pick-up/recogniz@erceptuafeatures
in the ernvironment so as to conform to its running

behaior. Inverselyit is permanentelkeepedawareby

the ervironmentitself of whatis possibleto do.

In the Capture mechanismthis point of view is
usedto generateactionsfrom the flow of perceptions.
For instancejn the presencef the blue doorthe robot
relates directly the perceptionsto possible actions.
Robotsis somehw "impregnated”with passingof the
bluedoor.

On thetutor side, the affordancegoint of view per
mits to conceved behaiors in an homogenoudrame-
work and eventually combinatethemmore easilythan
purposve behaiors.

3.4

Psychology suggeststhat parts of past experiments
aretransformedandreusedalongthe childhood. This

re-useprocesscan be someha mimicked on robots
side. Finding ways to reuseelementarybehaiors in

morecomple situationssimplifiesthelearningprocess
and can generatecomplex behaiors made of robust
parts.

Incrementallearning

This behaiioral elementslearned with the Capture
mechanismcould be reused in a more comple
behavior.

¢ In afirst phasewe canteach”asetof elementary
affordancesto a robot so asto form a first level
thatgroundsthe robotinto its ervironmentandits
actingcapabilities.

¢ In asecondphasewe canshow to therobotmore
complex demonstrationgolving the reuseof el-
ementanyaffordancesThelearningmechanismnin
this phaserelieson the robot’s capacityto recog-
nize effectively previouselementsA comple be-
haviors atthislevel canbethink of asa networkof
elementaryaffordanceswhere robot passefrom
affordancego affordances.

Thecapturemechanisntanbeextendedn thisdirec-
tion. Thecandidate®ehaiorscanbecomparedo parts
of a comple< demonstratiorby using effectorsvalues

proposedby Cells structureand indicationsgiven by
Contexts matching.At this level, eachdemonstration
is apossiblepathin thenetwork of affordancesTheob-
jective of thelearningprocesss to collectseveralpaths
and constructthe network. This hasgreatadwantages
overdirectlearningfrom complex demonstrations:

- the search-spacés reducedto a few elements.
Thoseelementoint to whatis really possibleto
do in the ervironment(from physicaland social
pointof view).

- thetutor canbuild a pedagogystartingfrom those
basicelements.

4 Conclusion- Futurework

In this paperwe have presentedbriefly our ongoing
work dedicatedo robotshehaior learningby the way
of vision-baseddemonstrations. We have then dis-
cussedsome more generalpoints relatedto this ap-
proach:

e A pedagogicapoint of view is quickly necessary
whenusinglearningby demonstrations.

e A behaior is largely determinedby the contexts
whereit canbereproduced.

e Elementaryaffordancesprovides a way to con-
ceive groundingof actionsin physicalandsocial
space.

e Incrementalearningshouldoffer a simpleway to
increasehecompley of learnedbehaviors.

In future work we plan to investigatethe following di-
rections:

e Evaluationand extensionof the Capturemecha-
nismsoasto dealwith sequentiahndmemoryas-
pectsof behaiors.

e Improvementand extensionof the Context struc-
turewith multi-modalinformations.

e Learningof complex andcomposedehaiors by
incrementalearning.
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