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1 Intr oduction

This paperis interestedin the adaptationof robotsto
real environmentsby the way of learningby demon-
strations.

Robots have sophisticated sensors and devices
comingfrom their designprocessbut no phylogenetic
neither ontogeneticprocesseshave occuredto really
adapt them to our environments. Like any living
being they have to dealwith physicalconstraints,and
moreover they have to be adaptedto constraintof our
humansocialspace.

To fill this gapthemethodslike:Q LearningbyDemonstration
[AtkesonandSchall,1997],
[H.FriedrichandDillman, 1995],Q LearningBy imitation
[BakkerandKuniyoshi,1996],
[J.DemirisandHayes,1996],
[G.HayesandDemiris,1994],
[Gaussieret al., 1997]Q andSupervisedLearning[Pomerlau,1993]

take adavantageof direct human demonstrationsto
obtainabetteradaptationto physicalandsocialspaces.

In the next chapter we present briefly our pro-
posedtechniquefor capturefrom demonstrationsand
reproductionof behaviors - a wider descriptioncan
be found in [HuguesandDrogoul,2001]. In a second
part, startingfrom this technicalproposal,we discuss
more generalpoints, always consideringthe practical
issues.

Figure1: Threeexampleswhich maybeusedto shape
thebehavior ”Exit by thedoor”.

2 Behavior Capture

The proposedlearningmechanismtransformsa setof
demonstrations(or examples)shown by a tutor into a
syntheticbehavior. This syntheticform will be used
later by an autonomousrobot so as to reproducethe
behavior in situation. This Bevavior Capture process
usesasinput thecolor video imagesseenby therobot
andthevalueof its effectors(herewheelsvelocities).

To record an example the tutor controls the robot
by a joystick (linked by radio communication)and
producesa movie file containingvideo framesfrom
robot cameraandrobot movements(effectorsvalues).
The movie files arefirst preprocessedand local prop-
erties R�SPT8U�S<V(WXSLT8U�S1Y;W	Z[ZHZ[W\SLT8U�S�]�^ are extractedfrom de
perceptualfield.
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The capture mechanismrelies on two data struc-
tures:

Q The perception/actionsrelationsareencodedinto
a setof cells.

Q Thecontext of thebehavior is capturedinto a con-
text histogram.

They arereferredhereafterby _K`MaXacb and _KUMdfe�`#gPe .
In the learning process, each example hji is first
recordedandcapturedseparately. This producesa set
of cells and an context histogramfor eachexamples,
denotedrespectively by _K`#a\a\b#i and _KUMdfe�`	gPe�i . The
final behavior is obtainedby fusion of all _K`MaXacb#i and_KUMdfe�`#gLe i into _K`MaXa\bMk iHl;m�n and _KUMdfe�`#gLe7k iHl;m�n which
canbeusedby therobotfor realoperation.

2.1 CellsPopulation

In the _K`MaXacb data structure the cells are organized
alongS dimensions,eachdimensioncorrespondingto a
property. Thepropertiesusedduringexperimentations
where:

Q x locationin theimage

Q y locationin theimage

Q color classproperty. Obtainedby quantizationin
hue,saturation,valuespace.

Q local density. For a given pixel, local density is
the amountof neighbouringpixels of the same
color.Thisenablesto distinguishseverallocalcon-
figurationsof apixel neighborood.

The captureof perception/actionrelationsis obtain
by projecting all video framessuccessively onto the
cells structure. A cell is activatedif all its propertiesR�SPT8U�S<V(WXSLT8U�S1Y;W	Z[W\SLT8U�S�]!Z-^ aredetected.Theuniquepur-
poseof a cell is to storea meanof the effectors(the
wheelsvelocites)computedfor periodsof activation
(Eq. 1).

o `MaXaqprhtscuvuLu!uLu!u!u*w`8xfx<` o e�UMT(bMy(z o e6{5|�z�e�`M}PR o `MaXac^5~ (1)

Figure2: Cellsdatastructureusedto capturea behav-
ior. Thefourth dimension(neibourhooddensity)is not
shown.

2.2 Context Histogram

The propertiesinformationsobserved along an exam-
ple,andmorepreciselythecolor information,areused
to build _KUMdfe�`#gLe�i thecontext histogramof examplehji ._KUMdfe�`	gPe�iN� o U8a\UMT	� representstheimportanceof o U8aXUMT for
the whole example. Every color is not taken into ac-
countanda measurementof colordispersionis usedso
as to favor colors that belongto compactandbig ob-
jects. _KUMdfe�`	gPe givesthe importanceof eachcolor for
the behavior. The fusion of several _KUMdfe�`	gPe accentu-
atesagainthosecolors.

2.3 Fusion of examples

Each example is captured separatelyin _KUMdfe�`#gLe i
and _K`MaXacb i . All example are finaly fused into_KUMdfe�`	gPe7k i[l;m�n and _K`MaXa\bMk iHl;m�n by simplearithmeticop-
erations. _KUMdfe�`	gPe7k i[l;m�n is obtainedby multiplying
separatehistogramsto emphazizecommon features._K`#a\a\b k i[l�m�n is obtainedby takingfor eachcell themean
of all correspondingcells.

2.4 ReproducingBehavior Autonomously

To reproducethebehavior in realtimetherobotcamera
imageis projectedagainonto the _K`Ma\a\b k i[l;m�n structure.
Thisdeterminesasetof activecellsfrom whichcurrent
effectorsvaluescan be deduced. A majority scheme
is used to determinethe effectors values from this
populationof cells.

In the majority scheme, cells importance is pon-
deratedby their corresponding_KUMdfe�`#gLe7k iHl;m�n � o U8a\UMT#� so



asto considerespeciallyimportantfeatures.

2.5 Experiment I : learning ”appr oach
object and stop”

The complete learning mechanismhas been imple-
mentedon a robot pioneer2DX running Linux and
equippedwith a colormonoscopiccamera.

In a first experiment we want the robot to ap-
proacha greenbox andthenstopat approximatelyone
meterof the box, Threeexampleshave beenrecorded
to learnthe behavior. Like the onein Fig. 3,eachone
correspondsto a different pose. Once the behavior
is active, the robot can be settledat various places,
it then reproducesthe behavior correctly if the box
is sufficiently visible. The behavior works also if the
greenbox is settledbeforeanotherbackground.

Figure3: A first example(resumed)to learn”approach
boxandstop”behavior. Figureshowstheoriginalvideo
andbelow thecorrespondingencodedvideowith color
properties.

The Fig. 4 shows the responseof _K`#a\a\b k i[l�m�n to a
videoimage. Intensityof pixelsin responseimagecor-
respondsto intensityof forward velocity storedin the
cells. In responseFig. 4 a lot of pixels”tells” to go for-
ward. A lot of indicateszerovelocity but arenot taken
into accountdueto context histogramponderation.In
Fig. 5 muchlessforward intensityis visible androbot
is nearto stop.

Figure4: Forwardvelocityresponse(right) of the _K`MaXa\b
structureto thevideoimage(left). Responseis strong,
therobotgoesforward.

Figure5: Forwardvelocityresponse(right)of the _K`Ma\a\b
structureto avideoimage(left). Responseis low , robot
is nearto stop.

2.6 Experiment II : learning ”exit by the
door”

In a secondexamplewe want therobot to learnto exit
by a blue door. In this casefour exampleshave been
recorded.To testbehavior reproductiontherobotis set-
tledatvariousposesnearthedoorandif thedooris vis-
ible, the robot is ableto orientate,adjustsits direction
andsucceedsin 60percentsof trials. Howevertherobot
sometimesjamsitself in thedoorembrasure,thisshows
that andavoidancereflex (ie: basedon sonars)should
beassociatedto obtainsmoothernavigation.Thefigure
7 and9 show thereactionscellspopulationin two dif-
ferentsituations.Eachactive cell is representedby the
vectorthatit proposes.

3 Discussion

The capturemechanismdescribedabove permits to
integrateseveralexamplesdemonstratedfrom different
poses. In the experiments, partial overlapping of
currentperceptionswith previously seenexamplesis
sufficient to generateappropriatesmovements. The
final context histogram captures in a rough form
somecontextual featuresof the environment. Fusion
highlightsonly thefew colorssupportingthebehavior.

The capture mechanism has certainly to be im-
proved and extended. However from this practical
departureit is possibleto envisageseveraldirections.

3.1 Pedagogy

In a learningby demonstrationschemethehumantutor
hasto interactswith therobotsoasto improve robot’s
capabilities.Thisdialecticalprocesssuggeststheuseof
some”pedagogical”tricks thatwill helpto supportand



Figure6: RobotVisionat frame e�z

Figure 7: Reactionsproposedby the cells at framee�z . Robotis far from thedoor andcells proposeto go
straighton

Figure8: RobotVisionat frame e7�

Figure9: Reactionsproposedby the cells at frame e7� .
Robotis justnearthedoorandnow cellsproposeto turn



structurethelearningprocess.Q Representationof robot’s inner functionning: The
humantutor shouldhave a clear ideaof what the
robotis really ableto do. Thetutor shouldbeable
to imaginatehow a robot canpassfrom onestep
to another, what featuresof the environmentthe
robotwill useto supportandconstructthebehav-
iors. Thusthetutor shouldbeprovidedwith some
idealizedrepresentationof robot’sinnermostfunc-
tionning. It is importantto noticethat this repre-
sentationcanbe entirely fake, its uniquepurpose
is to helpthetutor to establishsomeguidemarks.
With thepresentedtechniquethetutormight think
for instancethat compactcoloredobjectsareim-
portant,that thingspresentin eachexamplesare
importantalso,andsoon ...Q Convergingviews: Therobotandhumantutor live
in totally different perceptualspaces. It is clear
that from a perceptualandability point of view a
50cmroundbox evolving at 200 mm/sanda hu-
mantutor don’t sharemuchin common.This has
of courseimpactonthesignificanceof demonstra-
tions. However the experimentalsetupdesigned
to conductdemonstrationscanbetailoredsoasto
bring the tutor nearerfrom therobot. This canbe
doneby reducingthetutor’svisionandcontrolsvia
appropriateapparatus(computerdisplays,control
devicewith feedback,etc... ).Q Facetsof user’s intentions:

The objective of Learning by demonstrations
methodsis somehow to transmitthe intention of
theuserinto therobot’sbehavior. Fromevery day
experiencewe know that intention is a polymor-
phic andversatileobjectwhich is not so easyto
tackle.

In a simplified view the user’s intention can
be decomposedand cut into elementaryfacets.
Facets are just minimal scenarii, which, put
together, form the real behavior (ie: x<z o `	e V :
approachingthe door like that i would do that,x<z o `#e�Y : approachingit like this i would do this,x<z o `#e�� ) etc..)

In the capture mechanisma facet is a single
demonstration.The final purposeof the learning
mechanismis to agregatesthe facetsandprovide
correctbehavior for all theintermediatesituations.

Defining and showing the facets constitutesa
praticalpedagogy.

3.2 Context

Thecontext wherea behavior occursis of greatimpor-
tance.In our thinking a behavior is not a successionof
actionsthatcanbeperformedanywhere.

First, a synthetic behavior has to be independant
of irrelevant featuresof the learning context. For
instanceit is clear for a humanobserver that the box
whichappearsin Fig. 1 in only oneexampleshouldnot
betakeninto accountinto thefinal behavior.

Beside this, the context independancehas a coun-
terpart which is context detection. The actionsonly
make sensein precisecontexts and thus the ability to
recognizevalid contexts is very importantto triggerthe
appropriatedbehaviors.

The litterature often refers to similar (or inverse)
notion of perceptualaliasing in the framework of
Markov’s decisionsprocesses.However for the learn-
ing methodsthat involve humanswe preferthe notion
of context. This notion clearly points out the deep
differenciationwork that a robot should ideally do
to adaptitself to its environment. A robot hasnot to
perfom well in the most complicatedcase. It has to
perfomwell in mostof thecasesthatoccursreally.

Robots do not have model of the world at their
disposalandthereforeto determinewhat a context is,
is extremelydifficult. In capturemechanismswe use
a rough approachessuggestingthat simple statistics
computedover the perceptionsprovide valuable in-
dicatorsfor context identification. In [Hugues,2000]
we proposedhow perceptionscould be differentiated
andclassifiedusingKohonen’sFeaturesMap (SOMF).
Thiswasdonefor communicationpurposebut canalso
beusedin thecontext identificationproblem.

3.3 Elementary affordances

The theory of Affordancesproposedby J.J.Gibson
[Gibson,1986] suggeststhat a behavior is a com-
plementary relation between an animal and its
environment. The environmentprovidesa supportfor
what theanimalcanafford. For real living beingsthis
relation is the productof a complex phylogeneticand



eventually ontogeneticprocess. This approachcan
be (and has been) transposedsomehow in robotics
and robot behaviors can be thoughtof as elementary
affordances.In anaffordancepoint a view therobot is
nomoretrying to pick-up/recognizeperceptualfeatures
in the environment so as to conform to its running
behavior. Inverselyit is permanentelykeepedawareby
theenvironmentitself of whatis possibleto do.

In the Capture mechanismthis point of view is
usedto generateactionsfrom the flow of perceptions.
For instance,in thepresenceof thebluedoortherobot
relates directly the perceptionsto possible actions.
Robotsis somehow ”impregnated”with passingof the
bluedoor.

On the tutor side,theaffordancespoint of view per-
mits to conceivedbehaviors in an homogenousframe-
work andeventuallycombinatethemmoreeasilythan
purposivebehaviors.

3.4 Incr ementallearning

Psychologysuggeststhat parts of past experiments
aretransformedandreusedalongthe childhood. This
re-useprocesscan be somehow mimicked on robots
side. Finding ways to reuseelementarybehaviors in
morecomplex situationssimplifiesthelearningprocess
and can generatecomplex behaviors madeof robust
parts.

This behavioral elementslearned with the Capture
mechanism could be reused in a more complex
behavior.Q In afirst phase,wecan”teach”asetof elementary

affordancesto a robot so as to form a first level
thatgroundstherobot into its environmentandits
actingcapabilities.Q In a secondphasewe canshow to the robotmore
complex demonstrationsinvolving thereuseof el-
ementaryaffordances.Thelearningmechanismin
this phaserelieson the robot’s capacityto recog-
nizeeffectively previouselements.A complex be-
haviorsat this level canbethink of asanetworkof
elementaryaffordanceswhererobot passesfrom
affordancesto affordances.

Thecapturemechanismcanbeextendedin thisdirec-
tion. Thecandidatesbehaviorscanbecomparedtoparts
of a complex demonstrationby usingeffectorsvalues

proposedby _K`MaXacb structureand indicationsgiven by_KUMdfe�`	gPe7b matching.At this level, eachdemonstration
is apossiblepathin thenetwork of affordances.Theob-
jectiveof thelearningprocessis to collectseveralpaths
andconstructthe network. This hasgreatadvantages
overdirectlearningfrom complex demonstrations:

- the search-spaceis reducedto a few elements.
Thoseelementspoint to what is really possibleto
do in the environment(from physicaland social
pointof view).

- thetutor canbuild a pedagogystartingfrom those
basicelements.

4 Conclusion- Futur e work

In this paperwe have presentedbriefly our ongoing
work dedicatedto robotsbehavior learningby theway
of vision-baseddemonstrations. We have then dis-
cussedsomemore generalpoints related to this ap-
proach:

Q A pedagogicalpoint of view is quickly necessary
whenusinglearningby demonstrations.

Q A behavior is largely determinedby the contexts
whereit canbereproduced.

Q Elementaryaffordancesprovides a way to con-
ceive groundingof actionsin physicalandsocial
space.

Q Incrementallearningshouldoffer a simpleway to
increasethecomplexy of learnedbehaviors.

In futurework we plan to investigatethe following di-
rections:

Q Evaluationand extensionof the Capturemecha-
nismsoasto dealwith sequentialandmemoryas-
pectsof behaviors.

Q Improvementandextensionof the Context struc-
turewith multi-modalinformations.

Q Learningof complex andcomposedbehaviors by
incrementallearning.
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