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Abstract

This paper addresses the problem of the acquisition of
robot’s behaviors for real environments. It insists on the
interest of learning behaviors during robot’s interaction
with the environment under the control of a human tutor.
The paper presents a learning model conceived to syn-
thesize behaviors from a set of few examples and relying
on a distributed representation of perception/action rela-
tions. The model is experienced on a real robot to learn a
slalom task without giving any a priori information about
the task or any element of the environment. The model ex-
hibits properties that are well adapted to the interactive
learning of concrete behaviors.

1 Introduction

The integration of autonomous mobile robots in real en-
vironments requires to conceive robot behaviors able to
deal with uncompleted, un-precise and uncertain robots
perceptions as well as partially unpredictable actions.
Robots will have to be autonomous in un-modeled dy-
namic environments while behaving in ways useful to
human users. The question is therefore how can robots
acquire those behaviors ? Some behaviors can be explic-
itly programmed, but this requires an explicit description
of the tasks and a model of the environment. Some be-
haviors can be learned using teleological methods such
as reinforcement learning [11], or genetic algorithms [6].
This requires again, to define explicitly the behaviors by
the intermediary of a reward or fitness function and to use
a trial-and error scheme impossible to achieve in most en-
vironments.
From the human user point of view, a good way to de-
fine a behavior is to interact directly with the robot in
the destination environment. A set of methods which
could be grouped under the name of Empirical Learning
are gaining interest in the literature. Those methods are
Learning by demonstrations or from examples [1, 7, 12]
, Imitation [9, 8, 3, 2, 4] or more classically Supervised
Learning[14, 13]. Those works concentrate on the acqui-
sition of actions sequence but they rely on predefined and

Figure 1: The robot in the slalom task environment

simplified perceptions such as simple fixed shapes, fixed
color or ad-hoc perceptual behaviors. Contrarily, our ap-
proach is to define a representation of a behavior being
able to capture perceptions/relations without requiring a
priori knowledge to model the perceptual space. We are
particularly interested in finding a minimal representa-
tion of a behavior relying on very simple features. In
the following sections we present the representation and
the learning algorithm used to synthesize behaviors. The
experimentations consisting in learning a slalom task are
then described.

2 A Model for Behavior Learning

The framework of the model is a supervised learning
scheme where the human tutor records several examples
of a target behavior ( ie: a docking manoeuvre, a com-
plex succession of operations in a game or for person as-
sistance ... ) by remote controlling the mobile robot. The
tutor shows several variants of the behavior from differ-
ent postures. The purpose of the learning mechanism is
therefore to produce a synthetic, robust and reusable be-
havior from those heterogeneous parts. If the tutor is not
satisfied of the result he/she can add some new examples



or remove some others. To achieve this the model relies
upon three key points:

1. A collection of minimal perceptual features.

2. A learning procedure based on the sampling of the
examples.

3. An ensemble method for autonomous behavior real-
ization.

2.1 Input examples

The examples are sequences made of {Xt, Yt} couples
where Xt is the video input image perceived by the robot
at time t and Yt is the control order coming from the
tutor. The concatenation of all the examples gives the set
F of frames, this set is the input of the learning algorithm.

F = {{X1, Y1} , {X2, Y2} , ..., {Xn, Yn}} (1)

In practice Xt is a 40x30 pixels image and Yt is a 2D
action vector representing the two (differential) wheels
velocities.

Yt =

[
left wheel velocity
right wheel velocity

]
(2)

2.2 Collection of Pixel-Based Features

A behavior B is modeled by a set of simple features
which encodes the perception/action relation specific to
the behavior. Those features are obtained by sampling
the examples at the pixel level. The behavior representa-
tion has the following form:

B =

{{pixel11, pixel21, y1} ,
{pixel12, pixel22, y2} ,
...,

{pixel1m, pixel2m, ym}}

(3)

In each of thosem features pixel1 and pixel2 denote two
precise pixels in the image and y denotes an action vector.
A pixel is defined by a triplet {xpos, ypos, class}, the
class information is described in paragraph 2.6 and cor-
responds somehow to the pixel’s color. The action vector
y associated to each feature is the action to perform when
the feature is detected.
The collection of features is redundant because several
features can be detected in a given input image (as it is
the case for the image in figure 2). This is the averaged
contribution of several detected features which is used
to determine the robot actions. This representation is ro-
bust to noise, occlusions, and minor environment changes
due to its distributed and redundant nature. It permits to
fuse several examples into a single structure because it re-
mains at the pixel level and do not rely on macro-features.

Figure 2: Autonomous realization of behavior B. Fea-
tures detected in current input image X are represented
by linked pixels.

As it can be seen in figure 2 a simple couple of pixels im-
pose constraint onto the robot’s position. The choice of
two pixels has proven to be adapted in real experimen-
tation, features made of three or more pixels impose too
much constraint on the robot’s posture and can rarely be
matched , contrarily a feature made of a single pixel is
not discriminative enough.

2.3 Learning Algorithm

The learning algorithm used to build B from the exam-
ples is a sampling procedure which receives F for input
and outputs the collection B. It is made of three steps.
The step 1 is used to evaluate the examples complexity
and deduce the number of features needed based on the
number of distinct pixels occurrences. The step 2 samples
the examples by picking randomly features in the frames.
The step 3 associates an action to each feature.

1. Count np the number of distinct pixels
{xpos, ypos, class}, in F and set the number
of features: m = α × np (in experiments we used
α = 0.2).

2. For each of the m features pick a frame randomly in
F , in this frame pick randomly two pixels: pixel1
and pixel2.

3. For each feature f , compute yf , the arithmetic mean
of Y over the frames containing f .

In Step 2 we do not want to over-sample the less informa-
tive surfaces like large walls or carpet. Thus we constraint
the sampling so as the density of the classes in the result-
ing collection B is uniform. The Steps 3 corresponds to
the estimation of y = E[Y |pixel1, pixel2, F ]. The al-
gorithm has a time complexity in O(n) where n is the
number of frames.



2.4 Autonomous realization of a behavior

To control the robot in real-time the behavior has to pro-
duce cyclically an effector vector Y from the input video
imageX . This is obtained by averaging the contributions
of detected features.

1. From the current input image X , determine the
subset AB(X) of features of B found in X .

2. Compute Y as the average of y over the elements of
AB(X) :

Y =
1

|AB(X)|
∑

f∈AB(X)

yf . (4)

3. use Y for current wheels velocities.

This approach benefits of advantages which are common
to Ensemble Methods [5] particularly the statistical de-
termination of the solution. It is adapted to the frequent
cases where the robot perceives its environment partially,
occluded or even changed. A feed-forward neural net-
work (ie: a multi layer perceptron trained by backpropa-
gation) would take into account all the input images even
in unseen situation , contrarily the collection of features
reacts to already seen pixels and neglects other data.

2.5 Active perception

The model can provide a measure of the pertinence of the
current visual perceptions for a given behaviorB and this
information can be used in real-time to improve the au-
tonomous realization of the behavior. A utility measure
UB(X) is defined by the number of features of B found
in perception X (equation 5). UB(X) is low if the robot
is in front of a totally unknown scene, contrarily UB(X)
is high in front of a scene belonging to the learning exam-
ples. If the robot perceives a partial or shift image with
respect to the examples, UB(X) has a medium value.

UB(X) = |AB(X)| (5)

Along the realization of a behavior a robot can be in situ-
ations where its perceptions are difficult to exploit. This
happens for instance if someone passes near the robot
or if it is in front of an unknown scene. In those sit-
uations the robot can determine that UB(X) is below
a given threshold and it can actively search for a bet-
ter posture before continuing to move. In the experi-
ments this is done by rotating the camera and looking
where the UB(X) measure reaches a local maximum.
The learned material is therefore exploited by adding a a
build-in scan/search schema. To exemplify this view, the
plot of UB(X) in figure 4 has been obtained while the
camera was quickly scanning the environment by doing a
panoramic movement (see fig 3). UB(X) is maximal for
the views which can be used by the behavior.

Figure 3: A behavior B has been learned: entering
a small room. This figure shows a camera panoramic
movement of a corridor and room entrance. The light pix-
els correspond to detected features of B.Their are more
features detected in front of the room entrance,indicating
when B can be applied. UB(X) is reported in figure 4
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Figure 4: UB(X) measured while the camera is perform-
ing a camera panoramic. Corresponds to the successive
views of figure 3

2.6 Class of a pixel

To remove noise and illuminancy impact we do not use
directly the red, green, blue information of the video in-
put. Instead we associate to a pixel a class which com-
bines the color of the pixel and a pattern describing its
immediate neighborhood. The color is an eight bits in-
teger obtained by a HSV transform where Hue, satura-
tion, value are respectively coded with 4, 3 and 1 bits.
The pattern for a pixel is obtained by comparing its 5x5
pixels neighborhood to each of a set of 30 fixed pat-
terns (figure 5). The 30 patterns have been obtained sep-
arately by training a Kohonen Self Organizing Feature
Map (SOMF) [10] on a set of images coming from vari-
ous places in our office. Finally the class of a pixel com-
bine the two informations in a single expression equiva-
lent to: class = pattern∧color. This coding has proven
to provide stable information in several indoor environ-
ments. It exploits two complementary aspects of the im-
age which are the color and local shape.



Figure 5: The 30 fixed patterns (5x5 pixels each) used to
associate a class to pixel.
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Figure 6: Trajectories of the robot for the five examples
of the learning set. The figure is a plot of the odometer
values, as usual it is subject to drift and is not used by the
leaning model - The trajectories correspond to the five
movie in figure 7.

3 Experiments

For the experimentation we have used a mobile robot Pi-
oneer 2dx equipped with a monoscopic color camera and
an Pentium 200MHz on-board computer. Only video im-
age and wheel control are used. During recording of ex-
amples the robot is teleoperated with a joystick via radio-
ethernet. The video images are acquired at a rate of 3
images per second for the recording of examples as well
as for autonomous behavior realization. Prior to train-
ing and realization phases the images are preprocessed
as follow : pixelisation to reduce to a 40x30 image, nor-
malization of each of the red, green, blue planes to limit
illumination variations. Each of the two motored wheels
are controlled by a precise value ranging from -600.0 to
600.0 mm/s.
We experiment the model to learn a slalom task the en-

vironment of which is shown in the figure 1. The robot
has to slalom between three colored stakes and then ap-
proach a goal box. The robot does not react particularly
to a specific color, color of the stakes and those other ob-
jects are equivalent to him. Most of the time it does not
even see the stakes because it is turning around. To learn
the task we recorded 5 examples movies (fig. 7). Each
example is a possible variation of the slalom, their trajec-
tories can be seen in the figure 6. The learning phase is
fast and takes 65 seconds on a pentium II 300MHz. This
can be compared to the much longer training phase of a

percentage of success
2/3 of the task 83%
complete task 53%

Table 1: Experimentation results over 30 trials.

feed-forward neural network which would have required
much more examples anyway. For the evaluation all tri-
als start from the start position in front of the first stake,
a trial is considered successful if the robot follows cor-
rectly the path, do no touch the stakes and reaches the
goal with a 20 cm error. The robot is considered to have
achieved 2/3 of the task if it passes correctly the first two
stakes. The results are recapitulated in figure 1 and corre-
spond to the average over 30 successive trials. The robot
has succeeded completely 16 times over 30 and has suc-
ceeded 2/3 of the task 25 times over 30.
The behavior is reactive and the robot can be kidnaped
and displace in the task environment, it then continues the
task from this new point. If we place a chair to occlude
partially its view the robot can continue its job, providing
that we do not hide too much of its vision. The failures
of the robot occur nearly always in the same place where
the robot has only a grey wall in front of him, in this case
few information can be used to differentiate perceptions.

4 Discussion

The results presented in the preceding paragraph show
that it is possible to quickly learn a behavior starting with
a few examples and minimal features, the result is a be-
havior which is anchored in a real environment and cor-
responds to the tutor intentions. The kind of behaviors
learned can be helpful in a wide range of applications, the
proposed model provides a way to ground components of
a larger robotic application. What has been demonstrated
is a practical feasabily. However the behavior still needs
to be improved and this improvement can be envisaged
by taking benefit of the following properties.

Manageability of the representation. The
model provides a certain level of intelligibil-
ity. Each cell can be considered as a simple
rule saying: if pixel(xpos1, ypos1, class1) ∧
pixel(xpos2, ypos2, class2) then perform action ỹ.
A behavior is thus a large set of rules of this kind, it
can therefore be interpreted in various ways to find, for
instance, objects that influence the robot or situations
that cause behavior failure. The simplicity of the repre-
sentation enables off-line processing such as: fusion of
several behaviors, compression or filtering of behaviors.
We are currently experiencing the fusion of several
behaviors learned in different places but all correspond-
ing to the same abstract action (ie: dock to a power



station). We therefore try to obtain genericity starting
from the concrete situations and not by a generalization
mechanism.

Interactive Learning. A first scheme for interactive
learning is the possibility to add or remove example and
judge immediately how it affects the behavior. It is possi-
ble here due sufficiently fast learning and the possibility
to encode different examples. The representation of the
perception/action relation also permits to conceive on-
line mechanisms to adapt and tune the behavior on-line
under the control of a tutor, particularly in case of contra-
dictory examples. It is possible to identify the cells which
cause a particular action and reward cells positively or
negatively according to some tutor’s request. Under the
tutor control it is possible to over-sample or sub-sample
some parts of the environment.

Noise, occlusions. The model is well suited to resist to
partial occlusions of the visual field, which often hap-
pen in a dynamic environment. Due to collective struc-
ture, a behavior can still decides the right action even if
the environment features are partially visible ( if someone
passes in front of the robot for instance). The model can
also deal with noise: the incorrect perception of a pixel
doesn’t affect the whole behavior and is compensated by
other cells.

5 Conclusion and future work

We have presented a model which can be considered as
a distributed stochastic representation of a behavior from
a Machine Learning point of view, or as a multi-agents
representation of a behavior from a Multi-Agents point
of view. This model exhibits properties suited to in-
teractive behavior learning under the conduct of a hu-
man. Those properties are: a minimal and extendable
model, no need of a priori information, a fast learning
speed and a realistic use in noisy and occluded environ-
ment. Those properties are difficult to found in classical
learning methods such as feed forward neural networks.
They cannot be found either in methods relying on high-
level descriptions of the environment. The learning phase
described above can be though of as a bootstrap phase
where a proto-behavior is learned. In our on-going work
we are now working on the possibility to adapt the proto-
behavior on-line under the control of the human tutor.
To conclude we believe that teaching behaviors using
schemes such as examples based learning, imitation,
learning from demonstrations, all from an empirical point
of view, constitute one of the most realistic approach to
human use of agents and robots. We think that those ap-
proaches will benefit to take into account the intrinsic na-
ture of the perceptions (occluded, partial, noisy, uncertain
...) using a distributed model as it is the case in biologi-
cal systems, and not to rely onto an abstract idealized vi-
sion of a world made of few well-identified objects. This

should have consequences onto the learning mechanisms
themselves as well as on the structure of behaviors.
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Figure 7: The successive video frames of the five examples used to learn the slalom task (only 1 frame over 10 are
shown)


